Information Visualization as a Decision Support Tool in the "RiskCHANGES" **Spatial Decision Support System**

Introduction

The present study analyses the information visualization in the context of the web-based Spatial Decision Support System for natural risk management called "RiskCHANGES".

Most of the existing web-based systems visualize static maps, limiting in such a way their use at a specific study area. The current work combines data filtering, dynamic visualization and data comparison by using a shared database. The proposed techniques enable the effectiveness in the navigation and the display of large amount of data. Furthermore, it contributes to the facilitation of the decision making processes.

Methodology

The developed methodology integrates data taxonomy with geo-visual analytics in order to provide flexibility in organizing, retrieving and displaying risk-related data within the system.

The needs' assessment is based on expert knowledge and the use cases are examined in regard to the user's interaction with the visualization tools.

Fig. 1: Use case diagram

Contact Details: Irina Cristal | Technical University of Dortmund Tel.:+49 (0)231 755 2374 | e-mail: irina.cristal@gmail.com

I. Cristal¹, C.J. van Westen², W. H. Bakker², S. Greiving¹ ¹Institute of Spatial Planning, Technical University of Dortmund, Dortmund, Germany; ²ITC, University of Twente, Enschede, The Netherlands

Conceptual Framework

Implementation

The technological tools used for the system development combine open source JavaScript frameworks such as OpenLayers, ExtJS and GeoExt for the front-end application, PostgreSQL for data base management, and GeoServer for map services.

The communication between front-end and back-end is achieved by using the Python scripting language. The implementation follows the model-view-controller pattern in order to ensure flexibility and reusability of the system

OpenLayers 🛱 Ext JS 🤹 GeoExt 🏠 GeoServer ቅ python"

http://changes.itc.utwente.nl/CHANGES-SDSS

Data Filtering

Fig. 2: Input data filtering

Single Map Visualization

Fig. 5: Layers Comparison

Conclusion

The main concern of the research was to exploit the large amount of risk-related data in accordance to its representational goal. Thus, the system incorporates a filtering mechanism which leads either to a single map or to a map comparison visualization of the chosen data.

Future work will focus on providing customized feature information and on implementing the "on-the-fly" loss calculation.

"RiskCHANGES" Information Visualization is a web-GIS application allowing filtering, visualization and comparison of risk-related data.

dy Area: 0	demo	*			
ject: a	alternative and scenaric 💌				
elect Parameters -		Compare with:			
Business as usual	~	select scenario	~		
.030	~	select future year	~		
naineerina solutio	ons 💌	select alternative	~		
elect Maps		Compare with:			
elect Maps Debris flow	×	Compare with:	~		
Select Maps Debris flow	×	Compare with: Select Hazard Map Select Return Period	~		
Select Maps Debris flow 100 and_parcel_2030	• • _a1_s1 •	Compare with: Select Hazard Map Select Return Period Elements at Risk Map	~		
elect Maps Debris flow 00 and_parcel_2030 opulation	• • _a1_s1 •	Compare with: Select Hazard Map Select Return Period Elements at Risk Map Select Loss Type	~ ~ ~		
Select Maps Debris flow 100 and_parcel_2030 Dopulation	• _a1_s1 •	Compare with: Select Hazard Map Select Return Period Elements at Risk Map Select Loss Type Available Maps	~ ~ ~		

Fig. 3: Loss data filtering

atudy Area:	demo	*	
roject:	current situation	and al 💌	
isk Analysis Iame:	RiskCalculation	~	
- Select Parameters		- 🔺 Compare with:	
No scenario	~	scenario	~
2014	~	future year	~
no alternative	~	alternative	~
- Select Maps		– 🔺 Compare with: ———	
Debris flow	~	Select Hazard type	~
	~	Elements at Risk Map	~
TotalColumn		Select Exposure/Loss	~
TotalColumn loss	~	Select Exposure/Eoss	
TotalColumn loss economic	~	Loss Type	~

Fig. 4: Risk data filtering

- Basic GIS tools
- Feature Info
- Layer tree
- Context Menu
- Map Legend

Fig. 5: Side by side map comparison

Changing Hydro-meteorological Risks as Analyzed by a New Generation of European Scientists http://www.changes-itn.eu