Swiss buildings insurance system

UNIL | Lotreraité de Louise me

Risk management

OFPP 2012

OFPP 2001

DANGER MAPS: CONCEPTS COMMON TO ALL PROCESSES

Return period (T)

Mean time between two exceeds of a threshold value (or two occurrences of an event)

UNIL

Frequency vs. probability

Frequency is the inverse of the return period. Its unity is usually year¹, which corresponds to the average number of event per year.

Probability is the estimation of the likelihood of an event occurring (a given number of time) in a period of time. It is a number between 0 and 1.

If the events occurs independently according to a mean number λ in the interval, the probability that k events occurs in this interval is given by

$$P(X=k) = e^{-\lambda} \frac{\lambda^{\kappa}}{k!}$$

Which means that the probability that an event which occurs on average once year, do not happen in a year is 36.8%

Statistics of extreme events

To estimate the frequency of a rare event, statistical distributions, such as Gumbel, Pareto, GEV... are used. On the opposite as the normal distribution, for example, these distributions include rare and extreme events.

In this example, the frequency of the 2 day precipitation event responsible for the 2005 flood event in Switzerland is estimated at 77 years (with an uncertainty) according to a Gumbel distribution.

UNIL | Letreraité de Louise me

Indicative hazard maps

swisstopo dépourvues de foi publique

Indicative hazard maps are established to identify the regions were a danger map is necessary.

They are based on simple models applied with a conservative approach (i.e. to identify the maximal extent) and don't identify the intensities or probabilities

Snow avalanche indicative hazars map, geoplanet.vd.ch

Cne d'Ormont-

The danger maps products

Phenomenon map: field map showing the observed phenomenon (deposited blocks,...) and the relevant objects for the process (bridges,...)

Events registry: database of all known historical events

Scenarios: description of the considered scenarios for each return period class

Models

Intensity map: map showing the intensity according to the 3 classes, for each scenario

Danger map: combination of the (3) intensity maps with the matrix symbology

Phenomenon map

UNIL | Letteraité de Lause me

FLOODS

Uni UNIL | Université de Louise me

Hydrograph

Source: R. Metzger (2009)

UNIL I Leither hilf de Louise me

The river-floodplain system

UNIL | Leiversité de Lause me

Primary process example: obstruction

Source: Gli eventi alluvionali del 22 e 27 settembre in Liguria Studio Idrologico e Geomorfologico, GEAM XXX nº4, 1993

Source: R. Metzger (2009)

Primary process example: Digue break in New Orleans

Before Hurricane Katrina

Source: R. Metzger (2009)

Secondary process example: Erosion in Engelberg

Source: R. Metzger (2009)

Secondary process example: Flooding

Source: R. Metzger (2009)

Secondary process example: alluvial deposits in Klosters

Source: R. Metzger (2009)

From climate hazard to hydrological consequences

Source: R. Metzger (2009)

UNIL | Lotreraité de Louise me

Analysis of potential events at watershed scale

Primary processes (at the origin of the flood):

- (1) Material mobilization area
- (2) Failure of retention structures
- (3) Sedimentation
- (4) Obstruction by bridges
- (5) Obstruction of pipes
- (6) Seepage and dam failure by internal erosion
- (7) Banks overflow
- (8) Dike break after overflow

Data

• Synthesis of all existing elements

2

,4,5,10

- DTM
- Terrain analysis

9,10,11.1

(9) Moderate flood (low velocity)
(10) Long duration flood
(11) Dangerous flood
(12) Erosion
(13) Overflow with alluvial

deposits

Source: R. Metzger (2009)

Static vs. dynamic flood

Photo: R. Loat

Photo: E. Gertsh

 \rightarrow Depending on the velocity of the water, as well as the transported materials, the consequences of the flood will be different

Intensity

CHANGES

Unil Université de Lause me

ROCKFALLS

UNIUI Université de Laute ma

Indicative hazard maps: example 1

Goal: identify forests acting as a protection (for funding purpose)

Method: 3D modeling of 1 m³ rockfalls using all the area identified as rocks on the 1:25'000 topographic maps

Source: Liener et al. (2008)

Indicative hazard maps: example 2

Goal: identify potential risk area where danger maps will be established

Method: Slope angle distribution to identify potential source area and shadow angle to assess the runout

Source: Loye et al. (2009)

Source: Jaboyedoff et al. (2012)

Source area characterization

UNIL I Leiversité de Leure me