

ChangingRISKS: changing pattern of landslide risks as a response to global changes in mountain areas

R. Schlögel, A. Spickermann, A. Moravek,

A. Schmidt, B. Koenig

University of Vienna, Austria – T. Glade, C. Promper, H. Petschko

CSIC, Zaragoza, Spain – S. Bégueria, G. Sanchez, R. Serrano

ERA-NET PROJECT CIRCLE-2

CIRCLE-2 is an European Network of 34 institutions from 23 countries, committed to fund research, share knowledge on climate adaptation and to promote long-term cooperation among national and regional climate change programmes.

Assessment of Risks on transportation Networks resulting from slope Instability and Climate change in the Alps

Lead: Centre National de Recherche Scientifique (France)

Website: http://www.lgp.cnrs-bellevue.fr/arnica/

EURAS-CLIMPACT

Impact of climate change and related glacier hazards and mitigation strategies in the European Alps, Swedish Lapland and the Tien Shan Mountains, Central Asia

Lead: Department of Environmental Geosciences, University of Vienna (Austria)

Website: http://medienportal.univie.ac.at/uniview/forschung/detailansicht/artikel/wenn-die-gletscherschmelzen-1/

ChangingRISKS

Changing pattern of landslide risks as response to global changes in mountain areas.

Lead: Centre National de la Recherche Scientifique / Institut de Physique du Globe de Strasbourg (France)

CAMELEON

CArbon dynamics in Mountain Ecosystems: analyzing Landscape-scale Effects Of aNthropogenic changes (climate and land-use)

Lead: Laboratoire des Sciences du Climat et de l'Environnement - Commissariat à l'Energie Atomique (France)

EU FP7 ERA-Net

Coordination & Support Action

May 2010 - April 2014

20 Partners + 14 Contributing Partners

KEY RESEARCH QUESTION

- Can we identify changes in landslide hazard (susceptibility, frequency, magnitude) and landslide risks (vulnerability, costs) associated to climate and landcover change scenarios?
- What indicators to express these possible changes?

CONCEPT AND METHODOLOGY

- Definition of time series & maps of actual/changing predisposing/triggering factors
 - → Creation of actual and 'changed' landslide hazard maps
- Definition of 'changed' maps of landcover and socio-economic factors
 - → Creation of actual and 'changed' landslide risk maps

METHOD

Comparative analysis of 2 study areas with different environmental conditions and different exposures to landslide risks

PROJECT ORGANIZATION: TASKS

Flowchart of project tasks

WP1 - Characterization of past and current landslide activity

- 1.1 Documentation and characterization of landslide activity at the regional scale
- 1.2 Conditioning and triggering factors controlling process location, timing and intensity

WP2 - Characterization of past and future conditioning factors of landslide risks

- 2.1 Characterization of the past climate and simulation of the future climate and regionalization of meteorological parameters
- 2.2 Definition of the past and simulation of the future landuse characteristics
- 2.3 Definition of the past and of the future socio-economic trends

WP3 - Integrated landslide hazard analysis

- 3.1 Analysis of landslide susceptibility
- 3.2 Analysis of landslide hazard through hydrology-slope stability modelling
- 3.3 Forecasting trends in landslide activity and hazards for the future

WP4 - Integrated landslide risk analysis, and estimation of the consequences

- 4.1 Analysis of analytical vulnerability and cost of landslides
- 4.2 Analysis and mapping of landslide potential consequences and risks
- 4.3 Characterization of the response of the mountain system to hazard and exposure changes

WP5 - Indicators of changes on the vulnerability of mountain slopes

- 5.1 Definition of relevant indicators of changes.
- 5.2 Implementation of a demonstration platform for impact assessment and geovizualisation

Scale of analysis

regional scale (e.g. 1:25.000 – 1:10.000)

Landslide inventories
Observed probability of occurrence
Magnitude-frequency relationships

Susceptibility analysis

(multivariate modelling)

Hazard analysis

(Starwars, Probstab MassMove)

> local scale / hot-spot (e.g. 1:5000 – 1:2000)

WP1 - Characterization of past and current landslide activity

- 1.1 Documentation and characterization of landslide activity at the regional scale
- 1.2 Conditioning and triggering factors controlling process location, timing and intensity

PROGRESS

Landslide triggering factors analysis

→ Climate classification: analysis of synoptic weather situations for Barcelonnette

Mean characteristics of air-mass type associated to landslides triggering in the Barcelonnette basin for the 1975-2004 period.

Air- mass	Number	Number of debris flows	Number of muslides	P (mm)	Temperature at Nîmes (°C)			Altitude (m)		Atmospheric moisture (g water / Kg air)			
	of landslides				ground	850 hPa	700 hPa	850 hPa	700 hPa	ground	850 ha	700 hPa	total
P med	. 5	3	2	35,5	18,0	8,2	-0,8	1464,6	3043,2	11,1	6,7	4,2	27,4
Pm	7	0	7	17,5	15,1	5,2	-6,9	1320,7	2862,4	7,4	4,4	2,7	16,4
Pm d	8	6	2	20,5	18,9	8,9	-0,8	1487,4	3054,8	8,1	3,9	3,1	19,3
T con	3	3	0	18,8	31,2	16,7	4,3	1558,7	3182,7	11,5	7,0	5,2	32,6
Tm	5	3	2	26,3	23,0	12,1	4,3	1479,8	3086,5	11,9	6,2	5,2	27,8
T med	2	2	0	31,3	22,8	12,8	3,8	1473,0	3076,0	9,9	7,3	4,8	30,6

Pm: Polar maritim Pmd: Polar mediterannean

WP1 - Characterization of past and current landslide activity

- 1.1 Documentation and characterization of landslide activity at the regional scale
- 1.2 Conditioning and triggering factors controlling process location, timing and intensity

PROGRESS

Landslide triggering factors analysis

→ Rainfall thresholds: intensity-duration approach - Barcelonnette

Calculations based on the rainfall intensity threshold method (Caine, 1980; Montgomery et al., 2000)

The rainfall intensity is based on the total amount of rainfall for a given duration (1h; 2h; 6h; 12h; 24h), which may

Seasonal occurrence of landslides in the Barcelonnette basin

- storms) will trigger mostly **debris flows and shallow slides** in relatively permeable soils (e.g. moraines, scree slopes or poorly sorted slope deposits).
 - -> Long rainfall periods characterized by **low to moderate** average and peak rainfall intensity (i.e. the result of multiple and successive storms during a period of several weeks or months) can trigger/reactivate shallow and deep-seated landslides in low permeability soils and rocks (e.g., black marls, clay-rich material).

-> Events characterized by **high rainfall intensity** and **short episode duration** (i.e. mostly the result of localized convective

Peak intensity associated to debris flows and mudslides triggering

10¹

Duration (h)

100

Intensity (mm.h-1)

10⁰

10-1

10-1

- 2.1 Characterization of the past climate and simulation of the future climate and regionalization of meteorological parameters
- 2.2 Definition of the past and simulation of the future landuse characteristics
- 2.3 Definition of the past and of the future socio-economic trends

PROGRESS

Climate modelling

Dataset: station (observed) data - Barcelonnette

- Network of six meteo stations with daily precipitation data in the Barcelonnette area
- Summer Pnd_{q0.9} computed for each station

Dataset: GCM data - Barcelonnette

- Gridded data, 0.035° resolution (aprox. 4 km)
- Model CMCC-CM¹ (downscaling driven by ECHAM4-REMO GCM/RCM)
- Radiative / emmission scenarios: CMIP5 (control), RCP4.5/RCP8.5 (future)
- Periods: reference (1965–2000) and future (2001–2050)

Example: precipitation field in Barcelonnette of 1st January 1965

¹ Scoccimarro E., S. Gualdi, A. Bellucci, A. Sanna, P.G. Fogli, E. Manzini, M. Vichi, P. Oddo, and A. Navarra, 2011: Effects of Tropical Cyclones on Ocean Heat Transport in a High Resolution Coupled General Circulation Model. *Journal of Climate*, 24, 4368-4384.

- 2.1 Characterization of the past climate and simulation of the future climate and regionalization of meteorological parameters
- 2.2 Definition of the past and simulation of the future landuse characteristics
- 2.3 Definition of the past and of the future socio-economic trends

PROGRESS

Climate modelling

→ Creation of parameter maps relevant for landslide triggering

Parameter 1: 90th percentile of maximum n-days summer precipitation (Pnd_{0.9}, $1 \le n \le 10$)

- Most landslides are related to intense summer (JJA) rainfall episodes lasting for several days.
- The 90th percentile is the extreme event associated to a recurrence period of 10 years, which seems appropriate for landslide occurrence.
- Creation of maps of summer $Pnd_{00,9}$ precipitation for the actual and future periods.

- 2.1 Characterization of the past climate and simulation of the future climate and regionalization of meteorological parameters
- 2.2 Definition of the past and simulation of the future landuse characteristics
- 2.3 Definition of the past and of the future socio-economic trends

PROGRESS

Climate modelling

Map of summer P10d_{q0.9}

- Good relationship with elevation (p-value = 0.00977, $r^2 = 0.84$)
- OLS regression with elevation as covariate.

Regression between summer P10d_{q0.9} and elevation

Map of summer $P10d_{q0.9}$ for the reference period based on station-data

- 2.1 Characterization of the past climate and simulation of the future climate and regionalization of meteorological parameters
- 2.2 Definition of the past and simulation of the future landuse characteristics
- 2.3 Definition of the past and of the future socio-economic trends

PROGRESS

Climate modelling

Extrapolating to future scenario

- Maps of P10d_{q0.9} were computed from GCM data for ref. and future periods.
- Ratio between future and reference periods was used for extrapolating station-based P10d_{q0.9} map to future.

Ratio between future and reference summer P10d_{q0.9} based on GCM data: cyan = increase, magenta = decrease

Map of summer P10d_{q0.9} for the future period based on station-data and GCM projected change

- 2.1 Characterization of the past climate and simulation of the future climate and regionalization of meteorological parameters
- 2.2 Definition of the past and simulation of the future landuse characteristics
- 2.3 Definition of the past and of the future socio-economic trends

PROGRESS

- 2.1 Characterization of the past climate and simulation of the future climate and regionalization of meteorological parameters
- 2.2 Definition of the past and simulation of the future landuse characteristics
- 2.3 Definition of the past and of the future socio-economic trends

PROGRESS

- 2.1 Characterization of the past climate and simulation of the future climate and regionalization of meteorological parameters
- 2.2 Definition of the past and simulation of the future landuse characteristics
- 2.3 Definition of the past and of the future socio-economic trends

PROGRESS

Landcover modelling: observed frequency of changes

Scenario-based approach (e.g. PRUDENCE)

Driving factors:

- A: Agriculture
- B: Tourism
- C: Environmental awareness
- D. Natural hazard

- 2.1 Characterization of the past climate and simulation of the future climate and regionalization of meteorological parameters
- 2.2 Definition of the past and simulation of the future landuse characteristics
- 2.3 Definition of the past and of the future socio-economic trends

PROGRESS

- 2.1 Characterization of the past climate and simulation of the future climate and regionalization of meteorological parameters
- 2.2 Definition of the past and simulation of the future landuse characteristics
- 2.3 Definition of the past and of the future socio-economic trends

PROGRESS

- 2.1 Characterization of the past climate and simulation of the future climate and regionalization of meteorological parameters
- 2.2 Definition of the past and simulation of the future landuse characteristics
- 2.3 Definition of the past and of the future socio-economic trends

PROGRESS

- 2.1 Characterization of the past climate and simulation of the future climate and regionalization of meteorological parameters
- 2.2 Definition of the past and simulation of the future landuse characteristics
- 2.3 Definition of the past and of the future socio-economic trends

PROGRESS

- 3.1 Analysis of landslide susceptibility
- 3.2 Analysis of landslide hazard through hydrology-slope stability modelling
- 3.3 Forecasting trends in landslide activity and hazards for the future

Susceptibility modelling

Integration of climate parameter maps (actual, future) and landcover maps (actual, future) in a multivariate model → e.g. MSc thesis – Barcelonnette: A. Schmidt (started in February 2012)

Hazard modelling

Development of processing chain of process-based models: Starwars – ProbStab – MassMove/SlowMove

(van Beek, 2002; Malet et al. 2005; Begueria et al., 2009; Spickermann et al., 2012)

- 3.1 Analysis of landslide susceptibility
- 3.2 Analysis of landslide hazard through hydrology-slope stability modelling
- 3.3 Forecasting trends in landslide activity and hazards for the future

Starwars: slope hydrology (van Beek, 2002; Malet et al., 2005, ... and others)

Core model

• Generalized Darcy's law for saturated & unsaturated medium

$$q_i = -k_{rw} \frac{\rho_{w^*} g}{\mu_{w}} k_i \nabla (\Psi + z)_{p}$$

Continuity equation

$$\frac{\delta(\mathsf{n}\rho)}{\delta t} = \rho \frac{\delta \mathsf{n}}{\delta t} + \mathsf{n} \frac{\delta \rho}{\delta t}$$

• Richards diffusivity equation

$$\frac{\delta}{\delta x} \left(k(\omega) \frac{\delta h}{\delta x} \right) + \frac{\delta}{\delta y} \left(k(\omega) \frac{\delta h}{\delta y} \right) + \frac{\delta}{\delta z} \left(k(\omega) \frac{\delta h}{\delta z} \right) + W = \frac{\delta \omega}{\delta t}$$

PROGRESS

Additional capabilities

- dual porosity (fissure flow, matrix flow)
- lateral inputs: Q_{lat} = f(t)
- snow cover formation and snow melting
- topographic control: altitude on rainfall temperature slope gradient on radiation
- vegetation (canopy interception, transpiration)

- 3.1 Analysis of landslide susceptibility
- 3.2 Analysis of landslide hazard through hydrology-slope stability modelling
- 3.3 Forecasting trends in landslide activity and hazards for the future

Starwars: slope hydrology (van Beek, 2002; Malet et al., 2005, ... and others)

Numerical scheme

$$\begin{split} h_{x,y}^{t+1} &= \frac{1}{4} \Big(h_{x-1,y}^t \ + h_{x+1,y}^t \ + h_{x,y-1}^t \ + h_{x,y+1}^t \Big) \\ &- \frac{\Delta t}{\Delta x} \Big(h u_{x+1,y}^t \ - h u_{x-1,y}^t \Big) - \frac{\Delta t}{\Delta y} \Big(h v_{x,y+1}^t \ - h v_{x,y-1}^t \Big) \end{split}$$

Distributed 2.5-D representation (pseudo 3-D)

- cell calculation (center of the cell)
- geometry -> DEMs of layer interface

X-Y **→**

Lax partial difference scheme (explicit centered scheme, 2nd-order accuracy in space forward 1st -order accuracy in time)

PROGRESS

1 timestep

Spatially explicit input parameters

- adaptive spatial resolution (0.5 m 100m)
- adaptive temporal resolution (minutes, hours, days)
- landuse-dependant parameters (value distribution)

- 3.1 Analysis of landslide susceptibility
- 3.2 Analysis of landslide hazard through hydrology-slope stability modelling
- 3.3 Forecasting trends in landslide activity and hazards for the future

- **PROGRESS**
- Starwars: slope hydrology (van Beek, 2002; Malet et al., 2005, ... and others)
- Benchmarking / model performance: Starwars vs. FE model HYDRUS

Finite element mesh:

- 10074 triangular elements
- 5072 nodes
- complex Taylor-Galerkin scheme

GIS-based cells:

- 168 square cells
- 56 rectangular cells

<u>Example:</u> 1 model run of 600 timesteps (1 timestep = 1hour)

Computation time (Pentium IV 2.7 Ghz): 25 min

8 min

- 3.1 Analysis of landslide susceptibility
- 3.2 Analysis of landslide hazard through hydrology-slope stability modelling
- 3.3 Forecasting trends in landslide activity and hazards for the future
- Starwars: slope hydrology (van Beek, 2002; Malet et al., 2005, ... and others)
- Benchmarking / model performance: Starwars vs. FE model HYDRUS

- 3.1 Analysis of landslide susceptibility
- 3.2 Analysis of landslide hazard through hydrology-slope stability modelling
- 3.3 Forecasting trends in landslide activity and hazards for the future
- Starwars: slope hydrology (van Beek, 2002; Malet et al., 2005, ... and others)

- Application to real data: Super-Sauze landslide
 - Initial conditions: moisture content and groundwater level = 25 years of time series
 - Parameter optimisation (Marquardt-Levenberg algorithm, Pest software): mean observed data +- 20%
 - calibration on 2 piezometers with continuous recording + 10 piezometers with punctual measurements

- 3.1 Analysis of landslide susceptibility
- 3.2 Analysis of landslide hazard through hydrology-slope stability modelling
- 3.3 Forecasting trends in landslide activity and hazards for the future

ProbStab: slope stability (van Beek, 2002; Malet, 2003, Malet et al., 2007)

Slip surface

- → Volume of released material
- → Probabilities of release

- 3.1 Analysis of landslide susceptibility
- 3.2 Analysis of landslide hazard through hydrology-slope stability modelling
- 3.3 Forecasting trends in landslide activity and hazards for the future
- ProbStab: slope stability (van Beek, 2002; Malet, 2003, Malet et al., 2007)

PROGRESS

Application to real data: Super-Sauze landslide; main failure in May 1999

- 3.1 Analysis of landslide susceptibility
- 3.2 Analysis of landslide hazard through hydrology-slope stability modelling
- 3.3 Forecasting trends in landslide activity and hazards for the future
- MassMov: mass flow kinematics (Begueria et al., 2009)

Assumptions:

- Saint-Venant equation (shallow water approximation)
- One-phase flow
- Depth-integrated solution

Mass and momentum conservation:

$$\frac{\partial h}{\partial t} + c_x \frac{\partial (hu)}{\partial x} + c_y \frac{\partial (hv)}{\partial y} = 0$$

$$\frac{\partial u}{\partial t} + c_x u \frac{\partial u}{\partial x} + c_y v \frac{\partial u}{\partial y} + c_x k \frac{\partial (c_x gh)}{\partial x} = -c_x g \left(S_x + q_x S_f \right)$$

$$\frac{\partial v}{\partial t} + c_y v \frac{\partial v}{\partial x} + c_x u \frac{\partial v}{\partial y} + c_y k \frac{\partial (c_y gh)}{\partial y} = -c_y g \left(S_y + q_y S_f \right)$$

Rheology:

- Viscous fluid (Bingham, Couloimb-viscous, Hershel-Bulkley)
- Frictional (pure Coulomb, Voellmy)

- 3.1 Analysis of landslide susceptibility
- 3.2 Analysis of landslide hazard through hydrology-slope stability modelling
- 3.3 Forecasting trends in landslide activity and hazards for the future
- MassMov: mass flow kinematics (Begueria et al., 2009)
- Application to synthetic cases

Simulation of the propagation of a slurry wave over an idealized fan topography. An inlet area of five pixels was defined at the upper part of the fan, which represents the conextion with an upstream torrent. A constant input rate of 80 cm of mud flow was applied at the inlet during the first 20 seconds. The panels show the thickness of the flow at times t=5,20,35 and $50 \, s$, in m.

Propagation of a mud flow slurry on a channel. The input hydrograph had a triangular shape, raising from 0.65 m to 0.85 m at 25 seconds and then falling to 0 m at 30 seconds. The panels show the flow thickness at times t = 15, 30, 45 and 60 seconds.

- 3.1 Analysis of landslide susceptibility
- 3.2 Analysis of landslide hazard through hydrology-slope stability modelling
- 3.3 Forecasting trends in landslide activity and hazards for the future

MassMov: mass flow kinematics (Begueria et al., 2009)

Application to real data

- 3.1 Analysis of landslide susceptibility
- 3.2 Analysis of landslide hazard through hydrology-slope stability modelling
- 3.3 Forecasting trends in landslide activity and hazards for the future
- MassMov: mass flow kinematics
- Further development of the code and new implementation (Sanchez et al., in prep).
- closer to reality: advanced numerical solution with minimum diffusion
- faster model runs (C++ implementation)
- several interfacing options (PCRaster, GRASS, R, Python...)
- freedom to choose the license for distributing the code (was not possible with the previous implementation of MassMov2D in PCRaster)
- optimized for stochastic modelling (e.g. multi model-runs)

- 3.1 Analysis of landslide susceptibility
- 3.2 Analysis of landslide hazard through hydrology-slope stability modelling
- 3.3 Forecasting trends in landslide activity and hazards for the future

MassMov: mass flow kinematics

Test on a synthetic case

Example of 1D simulation: basal topography (blue), debris flow depth (red, left axis) and q (green, right axis). Initial state, intermediate states (t = 5, 15 s) and equilibrium (final) state.

- 3.1 Analysis of landslide susceptibility
- 3.2 Analysis of landslide hazard through hydrology-slope stability modelling
- 3.3 Forecasting trends in landslide activity and hazards for the future

Slow-Move: mass sliding (Spickermann et al., 2012)

Assumptions:

- Limit equilibrium theory and Mohr-Coulomb fialure criterion
- Sliding localized at shear band; possibilty of varying the vertical profile of velocity
- Up to now: fully water saturated mixture (e.g. one phase flow)

Mass and momentum conservation:

$$\rho h \left(\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \nabla \cdot \mathbf{v} \right) = \mathbf{D} + \mathbf{P} - \mathbf{S} - \mathbf{C} - \mathbf{N}$$

$$\mathbf{D} = \frac{\mathbf{W}\sin\alpha}{1/\cos\alpha} = \mathbf{W}\sin\alpha\cos\alpha$$

$$\mathbf{P}_{\min/\max} = K_{a/p} \frac{\mathbf{W} \cos \alpha}{1/\cos \alpha} \nabla h = K_{a/p} \mathbf{W} \cos^2 \alpha \nabla h$$

$$\mathbf{S} = \frac{\mathbf{W}\cos\alpha}{1/\cos\alpha}\tan\varphi_{app} = \mathbf{W}\cos^2\alpha\tan\varphi_{app}$$

$$\tan \varphi_{app} = (1 - r_p) \tan \varphi$$

$$r_p = \frac{\gamma_w h_w \cos^2 \alpha}{\rho g h}$$

$$\mathbf{N} = \eta \left(\frac{\partial \mathbf{v}}{\partial z} \right) = \eta \left(\frac{\mathbf{v}}{d} \right)$$

$$\mathbf{N} = \eta \left(\frac{\partial \mathbf{v}}{\partial z} \right) = \eta \left(\frac{\mathbf{v}}{d} \right) \qquad \qquad \rho h \left(\frac{\partial \mathbf{v}}{\partial t} \right) = \mathbf{D} + \mathbf{P} - \mathbf{S} - \mathbf{N} \qquad \qquad \frac{\partial h}{\partial t} + \nabla \cdot (h\mathbf{v}) = 0$$

- 3.1 Analysis of landslide susceptibility
- 3.2 Analysis of landslide hazard through hydrology-slope stability modelling
- 3.3 Forecasting trends in landslide activity and hazards for the future
- Slow-Move: mass sliding (Spickermann et al., 2012)
- Application to Super-Sauze landslide

- 3.1 Analysis of landslide susceptibility
- 3.2 Analysis of landslide hazard through hydrology-slope stability modelling
- 3.3 Forecasting trends in landslide activity and hazards for the future
- Slow-Move: mass sliding (Spickermann et al., 2012)
- Application to Super-Sauze landslide

- Further development of the code
 - Integration with Starwars

- 3.1 Analysis of landslide susceptibility
- 3.2 Analysis of landslide hazard through hydrology-slope stability modelling
- 3.3 Forecasting trends in landslide activity and hazards for the future

Hazard assessment through modelling

Estimation of probabilities of failure, runout distances and magnitude parameters (velocity, impact forces, thickness) through Monte-Carlo simulations

- 4.1 Analysis of analytical vulnerability and cost of landslides
- 4.2 Analysis and mapping of landslide potential consequences and risks
- 4.3 Characterization of the response of the mountain system to hazard and exposure changes

PROGRESS

Element at risk mapping and characterization

- 4.1 Analysis of analytical vulnerability and cost of landslides
- 4.2 Analysis and mapping of landslide potential consequences and risks
- 4.3 Characterization of the response of the mountain system to hazard and exposure changes

PROGRESS

Building time serie analysis from old maps and cadasters

- 4.1 Analysis of analytical vulnerability and cost of landslides
- 4.2 Analysis and mapping of landslide potential consequences and risks
- 4.3 Characterization of the response of the mountain system to hazard and exposure changes

PROGRESS

Building time serie analysis from old maps and cadasters

- 4.1 Analysis of analytical vulnerability and cost of landslides
- 4.2 Analysis and mapping of landslide potential consequences and risks
- 4.3 Characterization of the response of the mountain system to hazard and exposure changes

PROGRESS

Consequence analysis

→ indicator-based methodology of Puissant et al. (2005) applied to the whole Barcelonnette Basin

- 4.1 Analysis of analytical vulnerability and cost of landslides
- 4.2 Analysis and mapping of landslide potential consequences and risks
- 4.3 Characterization of the response of the mountain system to hazard and exposure changes

PROGRESS

Consequence analysis

- 5.1 Definition of relevant indicators of changes.
- 5.2 Implementation of a demonstration platform for impact assessment and geovizualisation
- Indicators of changes: to be defined
- Demonstration platform: Google Earth .kml products

